
Graco PD2K Integrated Siemens SDK
Release 0.1.1

Graco Inc.

Jan 13, 2023

CONTENTS

1 Overview 1
1.1 About the PD Platform . 1

1.1.1 Related Manuals . 1
1.2 Compatibility . 1

2 Getting Started 3
2.1 Getting the SDK . 3
2.2 Using the example project as a template . 3

2.2.1 Configure the PLC . 4
2.2.2 Configure the PD2K . 5
2.2.3 Project Structure . 7
2.2.4 Running the PD2K . 9
2.2.5 Where to go from here . 13

2.3 Adding the SDK to an existing project . 13
2.3.1 Using the global library . 13

3 Design 17
3.1 Command model standard . 17

3.1.1 The state output parameter . 17
3.1.2 Function Model . 18
3.1.3 Execute model . 18
3.1.4 Enable model . 20

3.2 Sharing access to device registers . 22
3.3 Accessing Profinet device data . 23

3.3.1 Accessing a Profinet IO device by device number . 24
3.3.2 Using TypeTarget . 24

4 API Documentation 25
4.1 GracoPd2kInt API . 25

4.1.1 Functions (FC) . 25
4.1.2 Function Blocks (FB) . 28
4.1.3 UDTs . 38

5 Changelog 47
5.1 Release version 0.1.1 . 47

i

ii

CHAPTER

ONE

OVERVIEW

The PD2K Integrated Siemens Software Development Kit (SDK) is a collection of sample code for easily controlling
a PD2K proportioner through a Siemens PLC. The code is designed to simplify many common integration challenges,
allowing you to build a working system very quickly.

1.1 About the PD Platform

The ProMix PD Platform is a family of electric dosing pump systems utilizing positive displacement (PD) technology.
More information can be found on the Graco product page.

This SDK is specifically designed for the PD2K Integrated product (also known as PD2K Auto Spray), which combines
the proportioning equipment with an applicator and electrostatic controller, all controlled from the same Communica-
tion Gateway Module (CGM). SDKs for the other ProMix PD products can be found at help.graco.com.

1.1.1 Related Manuals

These manuals are available for download at www.graco.com.

Manual number Description
3A4129 ProMix PD2K Proportioner Integrated for Automatic Spray Applications, In-

stallation
3A4128 ProMix PD2K Integrated for Automatic Spray Applications, Operation
334494 ProMix PD2K CGM Installation Kit, Instructions/Parts

1.2 Compatibility

The examples in this SDK are built using the Siemens TIA Portal platform V17 Update 4 with STEP 7 Professional.
Examples for earlier versions are not provided at this time.

All code is compatible with the latest hardware/firmware products for the S7-1200 and S7-1500 families of CPUs. The
example project is built specifically for CPU 1211C DC/DC/Rly (article number 6ES7 211-1HE40-0XB0). backwards
compatibility with obsolete/end-of-life products in the S7-1200/1500 family may be possible but is not guaranteed.

All code is written in either SCL or LAD language.

1

https://www.graco.com/us/en/in-plant-manufacturing/products/liquid-coating/meter-mix/plural-component-mixing-equipment/promix-pd.html
https://help.graco.com
https://www.graco.com
https://www.graco.com/bin/findManual?manual=3A4129
https://www.graco.com/bin/findManual?manual=3A4128
https://www.graco.com/bin/findManual?manual=334494

Graco PD2K Integrated Siemens SDK, Release 0.1.1

2 Chapter 1. Overview

CHAPTER

TWO

GETTING STARTED

This guide walks through setting up a Siemens PLC project using the SDK.

2.1 Getting the SDK

The SDK is packaged as a downloadable .zip archive found on help.graco.com. The latest version (as of writing) is
GracoPd2kInt_Siemens_SDK_v0.1.1.zip.

2.2 Using the example project as a template

The SDK comes with a Siemens example project providing some basic functionality right out of the box. Using this
project as a starting point is a good way to get to a working system quickly.

The example project can be found in the GracoPd2kInt_Example directory; the project file is Gra-
coPd2kInt_Example.ap17. Since this is a V17 project, make sure you have the correct version of TIA Portal installed
on your PC.

3

https://help.graco.com

Graco PD2K Integrated Siemens SDK, Release 0.1.1

2.2.1 Configure the PLC

The example project comes pre-loaded with a 1211C CPU program:

This can be downloaded directly to a matching physical PLC, or changed to a different model by right-clicking on the
CPU and selecting “change device”.

All of the FBs, FCs, and UDTs are included in the program under a “GracoPd2kInt” group folder:

4 Chapter 2. Getting Started

Graco PD2K Integrated Siemens SDK, Release 0.1.1

2.2.2 Configure the PD2K

In the network view of the example project, a default PD2K device is connected to the PLC:

2.2. Using the example project as a template 5

Graco PD2K Integrated Siemens SDK, Release 0.1.1

Make sure to set the Profinet settings to match the actual device - these are in Device view -> General -> PROFINET
interface -> Ethernet addresses:

Once the network configuration is setup to match your real device network, the project can be downloaded to your
physical PLC.

6 Chapter 2. Getting Started

Graco PD2K Integrated Siemens SDK, Release 0.1.1

2.2.3 Project Structure

The Main (OB1) block is the entrypoint for this project. This block simply calls an instance of the Pd2kExample FB:

All of the logic for this example is wrapped in this FB. Open the FB definition to see its code:

2.2. Using the example project as a template 7

Graco PD2K Integrated Siemens SDK, Release 0.1.1

The FB is quite simple - it calls a few other FBs/FCs included with the SDK. Each block handles one particular task; for
example, the StatusToUDT FC reads data from the PD2K and copies it into a UDT for more convenient lookup. The
PumpControl and GunControl blocks provide an interface for controlling the system, e.g. writing mode commands via
boolean variables. You can read the network comments for more information.

The example FB uses an instance datablock named “Pd2kExample_DB1”. Typically, you do not need to touch this, as
all of the relevant data is passed through parameters.

At the root of the project, there is a datablock named “Globals”. This block contains everything you as the user can
access for controlling the PD2K:

8 Chapter 2. Getting Started

Graco PD2K Integrated Siemens SDK, Release 0.1.1

Each of these variables correspond to parameters for the Pd2kExample FB called in Main.

The PD2K_STATUS variable contains all of the status data arranged in a convenient UDT form. This tends to be much
easier compared to working with the I process data directly. For more info, see StatusToUDT .

The PD2K_PUMP_CTRL variable provides access to the system mode commands and setpoints. Similarly, the
PD2K_GUN_CTRL variable provides access to the gun-related commands and setpoints. For more info, see Pump-
Control and GunControl.

The PD2K_ALM_CODE and PD2K_ALM_DT variables are the most recent alarm code and datetime values, respec-
tively. These are updated through the ReadAlarmInfo FB.

Finally, the PD2K_TARGET variable is the TypeTarget instance used to point to the actual PD2K device defined in the
project network configuration. see Using TypeTarget;

Note that no PLC tags are being used with this example. Because of how the project is structured, you can simply
access everything you need through the Globals datablock instead (but you can always add your own tags if you wish).

2.2.4 Running the PD2K

Once you have downloaded the example project to a PLC, you can start running the PD2K using the provided code.

While online with the PLC, open the Global DB. Expand the PD2K_TARGET variable. Confirm that the simulate
variable is set to FALSE and the pnDeviceNum matches that of the PD2K device (default is 1):

Expand the PD2K_STATUS variable. Assuming the PD2K is currently in “pump off” mode, you should see a “1” for
the system mode along with the “pumpOff” system mode flag set to TRUE:

2.2. Using the example project as a template 9

Graco PD2K Integrated Siemens SDK, Release 0.1.1

Next, expand the PD2K_PUMP_CTRL variable. Right-click the powerOnCmd member and select “modify operand”:

10 Chapter 2. Getting Started

Graco PD2K Integrated Siemens SDK, Release 0.1.1

Set the modify value to 1 (i.e. TRUE) and click OK:

The PumpControl FB sees this boolean and pulses the system mode command to “power on” (note the FB also clears
the powerOnCmd boolean). If there are no alarms present, the pumps should power on, followed by the system mode
status showing “standby”:

2.2. Using the example project as a template 11

Graco PD2K Integrated Siemens SDK, Release 0.1.1

You should now be able to set any of the other controls found in PD2K_PUMP_CTRL and PD2K_GUN_CTRL
and control the system. For example, write a desired flow rate value to PD2K_PUMP_CTRL.mixCtrlSP, then set
recipeChangeCmd to TRUE to perform a recipe change.

12 Chapter 2. Getting Started

Graco PD2K Integrated Siemens SDK, Release 0.1.1

2.2.5 Where to go from here

Now that you have explored the example project, you should have a better understanding of how to use the SDK in your
own larger applications. For example:

• The variables provided in the Globals DB can be connected to an HMI for touchscreen control of the system.

• You can use the Globals DB variables within your own custom application sequence. For example, the PLC can
monitor the pot life time of the current recipe and automatically trigger a purge when neccessary.

• Because of the modular design of the FBs/FCs, you can expand your program to control multiple PD2K systems
from the same PLC. Simply create a TypeTarget variable for each instance, assign that instance’s profinet device
number, and pass that into your function calls.

For more information about all the available program blocks, see the API Documentation.

2.3 Adding the SDK to an existing project

Besides using the example project, the contents of the SDK can be pulled into an existing TIA Portal project as well.
The recommended way is using the provided global library named “GracoPd2kInt_Library”. This contains all of the
FBs/FCs/UDTs from the example project, each of which can be added to an existing TIA Portal project.

2.3.1 Using the global library

With a TIA Portal project open, select the Libraries pane and click the “open global library” button:

2.3. Adding the SDK to an existing project 13

Graco PD2K Integrated Siemens SDK, Release 0.1.1

14 Chapter 2. Getting Started

Graco PD2K Integrated Siemens SDK, Release 0.1.1

Select the GracoPd2kInt_Library.al17 file in the file navigator and click Open. The blocks can be found in this library
under the “Master copies” folder:

Drag any of the program blocks into the project to use them. Note that the blocks must be dropped into their given
folders, e.g. FBs/FCs must go in Program blocks, UDTs must go in PLC data types. Once copied over, these blocks
can be used in the program.

Note: The blocks in the global library are stored as “master copies”, meaning they are not directly linked to the copies
in the PLC program. Any changes made in the PLC will not affect the global library (and vice-versa).

“Library types”, on the other-hand, provide a link between the the global library and the blocks in the PLC. However,
we do not utilize this feature in the SDK because it conflicts with the Siemens Version Control Interface (VCI), and
SDK development is done using that tool instead.

2.3. Adding the SDK to an existing project 15

Graco PD2K Integrated Siemens SDK, Release 0.1.1

16 Chapter 2. Getting Started

CHAPTER

THREE

DESIGN

This chapter discusses various decisions made in the design of the SDK.

3.1 Command model standard

Each of the FBs/FCs in this SDK follow a convention called the “Command model standard”. This convention is
loosely based on the PLCopen design recommendations for motion control blocks.

Generally speaking, every FB/FC is designed to perform a particular command or set of commands. Their interfaces
all follow the same conventions, so all blocks of a given model type are called in the same way.

There are three different command models:

• Function model

• Execute model

• Enable model

The function model is for simple stateless operations (i.e. FCs), while the execute and enable models run over time and
may have internal memory (i.e. FBs). These models will be covered in more detail below.

3.1.1 The state output parameter

Each command can be thought of as a state machine, where each instance of the command exists in exactly one state
at any point in time. These states are represented by a UDT output parameter called state. Within this UDT, there is
a member state.code that represents the current state as a 16-bit Word value.

The values for state.code are standardized such that the most-significant byte corresponds to a particular category.
These categories are defined in the following table:

State category State value (hex) Description
IDLE 16#0xxx The command is not running (enable model only)
BUSY 16#1xxx The command is running (execute model only)
DONE 16#2xxx The command completed successfully (execute/function models

only)
VALID 16#3xxx The command is running without issues/errors (enable model only)
ABORTED 16#4xxx The command was aborted (either locally or by a higher-priority

command)
ERROR 16#8xxx An error occurred while processing the command
ERROR_BUSY 16#9xxx An error occurred, but the command is busy attempting to recover

(enable model only)

17

https://plcopen.org/technical-activities/motion-control

Graco PD2K Integrated Siemens SDK, Release 0.1.1

There can be multiple independent states within each category - for example, states 16#8000, 16#8001, and 16#8002
would represent distinct error conditions for that command.

The state parameter also expresses the command’s state in the form of boolean flags, each corresponding to the bits
in state.code’s most significant byte. The flags are defined in the following table:

State flag bit number Description
BUSY 0 (2#0001) The command is running
DONE 1 (2#0010) The command completed successfully (execute/function models only)
VALID 1 (2#0010) The command is running without issues/error (enable model only)
ABORTED 2 (2#0100) The command was aborted (either locally or by a higher-priority command)
ERROR 3 (2#1000) An error occurred while processing the command

For example, if state.code is set to 16#8000, the ERROR flag would be on and the rest would be off. In many cases,
using the flags is more convenient than the state code value. More details regarding the state categories and flags for
each of the command models will be covered in the next sections.

3.1.2 Function Model

The function model represents a simple, stateless operation that processes immediately. All FCs in the SDK follow this
model, since FCs, by definition, have no internal memory. An example is DecodeDateTime - this command reads the
source input parameters and computes a native datetime value.

Function model commands typically use only DONE and ERROR states. If something goes wrong during execution
(e.g. a parameter is out of range), an error code can be returned to notify the caller. The state codes are normally
passed through the return value of the FC, but can also be passed as an output parameter. If a command has no error
conditions, then the state code can be omitted altogether.

3.1.3 Execute model

18 Chapter 3. Design

Graco PD2K Integrated Siemens SDK, Release 0.1.1

The execute model is used for commands that run from start to finish. Once started, the command runs until it either
completes the operation (DONE), experiences an error (ERROR), or is aborted (ABORTED). This model is stateful;
its behavior depends on previous state and can change over time.

Execute model commands are triggered using an execute boolean input parameter. Each rising edge on this parameter
executes the command once. The command only re-triggers once the command is in a “terminal” state - i.e., DONE,
ERROR, or ABORTED. Triggering the command while already running does nothing.

Here is a timing diagram for the execute model:

3.1. Command model standard 19

Graco PD2K Integrated Siemens SDK, Release 0.1.1

a. A rising edge on execute starts the command, setting the busy flag to true.

b.
Execute is automatically cleared by the command.

c. When the command completes, busy is set to false and done is set to true.

d.
When command is executed again, done is set to false and busy is set to true.

e. Additional execute signals while busy are ignored, rather than restarting the command.

f.
If a problem occurs while processing the command, the error flag is set to true.

g. Similarly, if something interrupts the command, the aborted flag is set to true.

Note that the execute input will automatically be cleared by the FB; there is no need to reset the trigger from outside
logic. This provides additional flexibility, e.g. when controlling from browser-based HMIs that lack momentary push
buttons. The input can still be written from a regular coil - either way, the command will behave the same.

Some commands (but not all) may include a cancel input for stopping a command early. cancel inputs work the
same way as execute, except they trigger a transition from BUSY to ABORTED.

3.1.4 Enable model

20 Chapter 3. Design

Graco PD2K Integrated Siemens SDK, Release 0.1.1

The enable model is used for commands that run indefintely. This differs from the execute model in that the enable
model does not have a DONE condition. Instead, this model refers to normal operation as VALID. The enable model
is useful for things like jog operations.

Enable model commands use an enable boolean input to control their state. When enable is false, the command is
IDLE and does nothing. When true, the command runs its logic sequence and writes to its outputs.

An example of the enable model is the PumpControl FB. When enabled, the FB responds to inputs and updates the
system mode accordingly. Disabling the FB allows it to be “detached” from the device’s registers, which could then be
controlled through some other logic.

Here is a timing diagram for the enable model:

3.1. Command model standard 21

Graco PD2K Integrated Siemens SDK, Release 0.1.1

a. A rising edge on enable starts the command. The busy and valid flags are set to true.

b.
When an error occurs, error is set to true and valid is set to false. In this case, the block logic
can automatically recover from the error, so the busy flag stays at true.

c. The block logic handled the error - valid is set back to true and error is set back to false.

d.
In this case, an error occurred that requires user intervention. Error is set to true, and both
valid and busy are set to false.

e. Setting enable to false resets the block and clears the error.

f.
Setting enable to false also sets both valid and busy to false.

g. The command may also be aborted, causing the aborted flag to be true and valid/busy to be
false.

Unlike the execute model, the state flags for the enable model are not all mutually-exclusive. Under normal operation,
the VALID and BUSY flags are true, meaning the command is running without issues. If an issue does occur, there are
two possibilities - either it is something the FB can deal with automatically, or it is something outside of its control.

In the former scenario, the command enters an ERROR_BUSY state, which sets both the ERROR and BUSY flags to
true. This means the command has identified an issue and is working to resolve it, e.g. retrying a failed message.

In the latter scenario, the command enters an ERROR state, without the BUSY flag. The command has experienced an
issue that it cannot fix, and it is up to the calling code to resolve it. When this happens, the command must be reset by
setting enable to false. It can then be re-enabled once the issue has been dealt with.

The ABORTED state works the same way as the ERROR state, but this is typically used for situations where another
process in the program has overwritten some value the command was using. Because enable model commands can be
disabled at any point, they do not need a cancel input, like in the execute model.

Note that, while enable model commands are designed to be stopped at any time, there may be several cycles where
the command performs some cleanup logic before returning to IDLE state.

3.2 Sharing access to device registers

Many of the FBs/FCs in this SDK write to the same sets of Profinet device registers. For example, The ReadAlarmInfo
and ReadRecipe FBs both call SendDCS internally, which uses the DCS registers to query data from the PD2K. Only
one DCS request can be sent at a time, so care must be taken to avoid writing the registers from multiple locations
in logic at the same time. For example, if ReadAlarmInfo and ReadRecipe were both executed at the same time and
allowed to write to the DCS registers, they would interfere with one another and result in a race condition.

To overcome this, each of the FBs in this SDK are designed using a concept known as a semaphore. In general,
semaphores prevent simultaneous writes to a shared resource (like the device registers) using a locked/unlocked mech-
anism. In short, the FBs will take turns without interfering with one another.

Take the example of executing both the ReadAlarmInfo and ReadRecipe FBs at the same time. Before either FB does
anything, they will each read the DCS acknowledge and DCS command register values. If both values are 0 (i.e. no
operation, or NOP), then that FB can assume no other FB is currently using the DCS registers and thus, continue its
sequence. If either register is non-zero, however, then some other FB has accessed it first, so the FB will go into a wait
state until either the registers become available again or the FB times out.

22 Chapter 3. Design

Graco PD2K Integrated Siemens SDK, Release 0.1.1

Note that this mechanism only works because all FBs follow the same rules of only accessing registers when they are
considered unlocked. Nothing prevents the user’s program from writing to a register directly, and doing so will cause
conflicts with the SDK FBs.

It’s also worth noting that this coordinating behavior works best with only 2-3 active FBs at a time. If many blocks
are waiting, It’s possible some of them will never be called because the earlier blocks will always take control first.
In these situations, it is recommended to structure the program into a sequence where only a couple blocks are called
simultaneously.

3.3 Accessing Profinet device data

When using the Profinet protocol, the device data is accessed via memory addresses in the process image of the PLC.
The addresses can be freely assigned and do not have to be in any particular order. Unfortunately, this makes writing
modular code like the SDK library difficult. Our FBs/FCs need some way to locate the registers without hardcoding in
the address values.

One approach would be to pass each of the required input addresses as parameters to the FB/FC, and to write the
output addresses through output parameters. However, this approach becomes tedious when many different registers
are needed. For example, the SendDCS FB needs access to all DCS registers - over 16 total. It’s also very easy for the
programmer to mistakenly connect a register to the wrong parameter, resulting in bugs that are difficult to troubleshoot.

Another approach would be to use PLC tags assigned to the Profinet addresses. This is typical when writing a program
for the end user. However, this means the code will depend on a specific set of tags being present in the PLC. Since the
tags would be hardcoded into the logic, you would not be able to control multiple PD2Ks from the same PLC without
first rewriting the code.

Fortunately, there is a built-in solution that provides easy, modular access to Profinet IO devices that does not involve
rewriting any code!

3.3. Accessing Profinet device data 23

Graco PD2K Integrated Siemens SDK, Release 0.1.1

3.3.1 Accessing a Profinet IO device by device number

Within a given Profinet network, every device is assigned a unique device number. This number can be found in its
device configuration under General -> Profinet Interface -> Ethernet addresses -> Profinet -> Device number:

Each Profinet device has “slots” for each of its data registers. These slot numbers are fixed for every PD2K system and
defined in the GSDML file (e.g. “current system mode” will always be slot 1). Together, the device number and slot
number define a “geographic location” for a given piece of data.

Siemens provides a built-in way to look up the memory address of a slot from its geographic location. The solution is
using the GEO2LOG FC (for S7-300/400, the equivalent is GEO_LOG). By passing a device number and slot number
to this FC, we can look up the slot’s corresponding memory location and access it like any other address. Since all
Graco products have fixed slot numbers, we can access all device data from a FB/FC just by passing in the device
number - no tags required!

This SDK provides two FCs called GetDataBySlotNum and SetDataBySlotNum. These are wrappers around
GEO2LOG/GEO_LOG, and they are used to read/write data from a Profinet device. The device number is passed
to the pnDeviceNum input parameter, and the desired slot number is passed to slotNum. The other FBs/FCs use these
FCs internally to access the device registers by their given slot numbers.

3.3.2 Using TypeTarget

The TypeTarget UDT is used extensively throughout the SDK code. This type has a member named “pnDeviceNum”
should be assigned a specific PD2K Profinet device number. The SDK code uses this value to access device data
through the method described above.

Note: TypeTarget also supports running in “simulation” mode, where instead of operating on a real Profinet device,
all data flows through a “simData” array member in the UDT. This can be useful for testing logic when a real PD2K is
not available. Setting the “simulate” member to true enables this mode. Just make sure to set this to “false” when in
production, otherwise the system will not operate correctly!

24 Chapter 3. Design

CHAPTER

FOUR

API DOCUMENTATION

This chapter provides a reference of all functions, function blocks, and UDTs defined in the SDK.

Note: All FBs/FCs/UDTs start with the prefix “GracoPd2kInt_” in the SDK project files. This helps prevent naming
collisions if multiple SDKs are used in the same PLC program.

4.1 GracoPd2kInt API

4.1.1 Functions (FC)

DecodeDateTime

Convert from Graco-formatted date and time data into Siemens DTL.

The Graco date format is encoded as four bytes. These bytes correspond to the following (in MSB order): - byte 1: last
two digits in year (0-99). Starts at year 2000 (0) and max year is 2099 (99). - byte 2: month number, with January=1,
February=2, etc. 0 is not a valid month number. - byte 3: day number (1=the 1st of the month). 0 is not a valid day
number. - byte 4: day of week (1=Monday, . . . 7=Sunday). 0 is not a valid day of week number. The Graco time format
is also encoded as four bytes: - byte 1: not used - byte 2: hour number (24 hour format). 0=midnight, 1=1AM, etc. -
byte 3: minute number (0-59) - byte 4: seconds number (0-59)

dateSource (INPUT DWord)
Graco date format source

timeSource (INPUT DWord)
Graco time format source

dateTimeDest (OUTPUT DTL)
Datetime result

RETURN (Void)

25

Graco PD2K Integrated Siemens SDK, Release 0.1.1

DecodeEventCode

Convert an event/alarm code into a Siemens String. Event codes are always 4 ASCII characters in length.

source (INPUT DWord)
Event code source, packed into DWord

dest (OUTPUT STRING)
String result

RETURN (Void)

DecodeUserID

Convert a user ID into a Siemens String. User IDs are sent as 3 DWords each containing up to 4 ASCII characters. The
max length of the entire user ID is 9 characters.

source1 (INPUT DWord)
User ID source, first four chars, packed as DWord

source2 (INPUT DWord)
User ID source, chars 5-8, packed as DWord

source3 (INPUT DWord)
User ID source, char 9, packed as DWord

dest (OUTPUT STRING)
String result

RETURN (Void)

EncodeUserID

Converts a Siemens String into an equivalent set of DWords for a user ID. The max length of a user ID is 9 characters,
and this FC will only process the String up to that length.

source (INPUT STRING)
String source

dest1 (OUTPUT DWord)
Result, first four chars, packed as DWord

dest2 (OUTPUT DWord)
Result, chars 5-8, packed as DWord

dest3 (OUTPUT DWord)
Result, char 9, packed as DWord

RETURN (Void)

26 Chapter 4. API Documentation

Graco PD2K Integrated Siemens SDK, Release 0.1.1

GetDataBySlotNum

Read data from the specified Profinet device number(defined in target parameter) and a slot number. This FC uses the
GEO2LOG and RD_ADDR built-in functions internally to lookup the process data address. The status codes from
those functions are forwarded through the return value of this function.

pnSlotNum (INPUT UInt)
Profinet slot number

target (INOUT TypeTarget)
target to operate on

data (OUTPUT DWord)
Current process data

RETURN (TypeFunctionCmdState)

SetDataBySlotNum

Writes data to a specified Profinet device number (defined in target parameter) and a slot number. This FC uses the
GEO2LOG and RD_ADDR built-in functions internally to lookup the process data address. The status codes from
those functions are forwarded through the return value of this function.

pnSlotNum (INPUT UInt)
Profinet slot number

data (INPUT DWord)
Data to write

target (INOUT TypeTarget)
target to operate on

RETURN (TypeFunctionCmdState)

StatusToUDT

Read status data from a PD2K Integrated device and collect it into a user-defined data type. This provides a more-
convenient view of the available data compared to accessing it directly. If an error occurs while attempting to read the
device data, the state codes from GetDataBySlotNum will be forwarded through the return value of this function.

target (INOUT TypeTarget)
Target to operate on

statusUDT (OUTPUT TypePd2kIntStatus)
Status data packed in a user-defined data type

RETURN (TypeFunctionCmdState)

4.1. GracoPd2kInt API 27

Graco PD2K Integrated Siemens SDK, Release 0.1.1

4.1.2 Function Blocks (FB)

GunControl

An interface into the gun controls for the PD2K Integrated system. This allows you to control the gun mode, gun
trigger(s), air solenoids, electrostatics, the dynamic preset values, and other gun-related functions. The control inputs
come from a user-defined type - see TypeGunControls.

enable (INPUT Bool)
Enable command

applicatorType (INPUT USInt)
Applicator type (0=AirPro Auto, 1=G40 Auto, 2=AirProEFX, 3=Pro XPc Auto, 4=ProBell)

controls (INOUT TypeGunControls)
controls

target (INOUT TypeTarget)
target to operate on

state (OUTPUT TypeEnableCmdState)
Command state

State codes

• 16#3000 - Command is valid, running

• 16#8000 - Error, device number is invalid

• 16#8001 - Internal error

• 16#0000 - Command is disabled

PumpControl

An interface into the pump controls for the PD2K Integrated system. This allows you to control the pump system state
(e.g. mixing, standby, recipe change), clear alarms, complete a job, and set the mix control setpoint. The control inputs
come from a user-defined data type - see TypePumpControlInputs.

enable (INPUT Bool)
Enable command

controls (INOUT TypePumpControls)
Controls

target (INOUT TypeTarget)
Target to operate on

state (OUTPUT TypeEnableCmdState)
Command state

28 Chapter 4. API Documentation

Graco PD2K Integrated Siemens SDK, Release 0.1.1

State codes

• 16#3000 - Command is valid, running

• 16#8000 - Error, device number is invalid

• 16#8001 - Internal error

• 16#0000 - Command is disabled

ReadAlarmInfo

Read an alarm record from the PD2K. See SendDCS for state codes.

indexNum (INPUT USInt)
Index number (0-199)

execute (INOUT Bool)
Execute command

target (INOUT TypeTarget)
Target to operate on

eventCode (OUTPUT STRING[4])
Event code

dateTime (OUTPUT DTL)
Event datetime

state (OUTPUT TypeExecuteCmdState)
Command state

ReadEventInfo

Read an event record from the PD2K. See SendDCS for state codes.

indexNum (INPUT USInt)
Index number (0-199)

execute (INOUT Bool)
Execute command

target (INOUT TypeTarget)
Target to operate on

eventCode (OUTPUT STRING[4])
Event code

dateTime (OUTPUT DTL)
Event datetime

state (OUTPUT TypeExecuteCmdState)
Command state

4.1. GracoPd2kInt API 29

Graco PD2K Integrated Siemens SDK, Release 0.1.1

ReadFluidControlMode

Read the current fluid control mode (flow or pressure). See SendDCS for state codes.

execute (INOUT Bool)
Execute command

target (INOUT TypeTarget)
Target to operate on

fluidControlMode (OUTPUT Bool)
Fluid control mode (False=flow, True=pressure)

state (OUTPUT TypeExecuteCmdState)
Command state

ReadFlushSeq

Read parameters for a flush sequence. See SendDCS for state codes.

flushSeqNum (INPUT USInt)
Flush sequence number (1-5)

execute (INOUT Bool)
Execute command

target (INOUT TypeTarget)
Target to operate on

gunPurgeTime (OUTPUT UInt)
Gun purge time (s)

initialFlushVol (OUTPUT UInt)
Initial flush volume (cc)

finalFlushVol (OUTPUT UInt)
Final flush volume (cc)

numWashCycles (OUTPUT USInt)
Number of wash cycles

strokesPerWashCycle (OUTPUT USInt)
Number of strokes per wash cycle

state (OUTPUT TypeExecuteCmdState)
Command state

ReadGunContents

Read the recipe number currently loaded in a specified gun number. This will return 0 if the gun is filled with solvent,
or 61 if the material is unknown. See SendDCS for state codes.

gunNum (INPUT USInt)
Gun number (1-3)

execute (INOUT Bool)
Execute command

target (INOUT TypeTarget)
Target to operate on

30 Chapter 4. API Documentation

Graco PD2K Integrated Siemens SDK, Release 0.1.1

recipeNum (OUTPUT USInt)
Recipe number

state (OUTPUT TypeExecuteCmdState)
Command state

ReadJobInfo

Read a job record from the PD2K. See SendDCS for state codes.

indexNum (INPUT USInt)
Index number

execute (INOUT Bool)
Execute command

target (INOUT TypeTarget)
Target to operate on

dateTime (OUTPUT DTL)
Recorded datetime

jobNum (OUTPUT UInt)
Job number

recipeNum (OUTPUT USInt)
Recipe number

totalVol (OUTPUT UDInt)
Total volume of mixed material (cc)

userID (OUTPUT STRING[9])
User ID

state (OUTPUT TypeExecuteCmdState)
Command state

ReadMixFillSP

Read the current mix fill setpoint. See SendDCS for state codes.

execute (INOUT Bool)
Execute command

target (INOUT TypeTarget)
Target to operate on

mixFillSP (OUTPUT UInt)
Current mix fill setpoint (cc/min for flow mode, psi for pressure mode, 0 if disabled)

state (OUTPUT TypeExecuteCmdState)
Command state

4.1. GracoPd2kInt API 31

Graco PD2K Integrated Siemens SDK, Release 0.1.1

ReadPreset

Read the parameters for a specified gun preset number. See SendDCS for state codes.

presetNum (INPUT USInt)
Preset number (0-98)

execute (INOUT Bool)
Execute command

target (INOUT TypeTarget)
Target to operate on

controlSP (OUTPUT UInt)
Fluid control setpoint (cc/min for flow mode, psi for pressure mode)

innerAirSP (OUTPUT USInt)
Inner/atomizing air setpoint (psi)

outerAirSP (OUTPUT USInt)
Outer/fan air setpoint (psi)

turbineSpeedSP (OUTPUT USInt)
Turbine speed (kRPM)

elecVoltageSP (OUTPUT USInt)
Electrostatic voltage setpoint (kV)

elecCurrentSP (OUTPUT USInt)
Electrostatic current setpoint (uA)

state (OUTPUT TypeExecuteCmdState)
Command state

ReadPumpMaterial

Read the material number currently loaded in a specified pump number. See SendDCS for state codes.

pumpNum (INPUT USInt)
Pump number (1-4)

execute (INOUT Bool)
Execute command

target (INOUT TypeTarget)
Target to operate on

materialNum (OUTPUT USInt)
Material number

state (OUTPUT TypeExecuteCmdState)
Command state

32 Chapter 4. API Documentation

Graco PD2K Integrated Siemens SDK, Release 0.1.1

ReadRecipe

Read parameters for a given recipe number. See SendDCS for state codes.

recipeNum (INPUT USInt)
Recipe number (0-60)

execute (INOUT Bool)
Execute command

target (INOUT TypeTarget)
Target to operate on

matNumA (OUTPUT USInt)
Material number of component A

matNumB (OUTPUT USInt)
Material number of component B

flushSeqNumA (OUTPUT USInt)
Flush sequence number for component A

flushSeqNumB (OUTPUT USInt)
Flush sequence number for component B

mixRatioSP (OUTPUT UInt)
Mix ratio setpoint (A*100 : B)

potLifeTimeSP (OUTPUT UInt)
Potlife time setpoint (min)

state (OUTPUT TypeExecuteCmdState)
Command state

ReadRecipePotLifeTime

Read the remaining potlife for a given recipe number if it is currently loaded and mixed. This command will return the
max UInt value (65535, or 16#FFFF) if there is no potlife time associated with the recipe or if the timer has not started.
See SendDCS for state codes.

recipeNum (INPUT USInt)
Recipe number (1-60)

execute (INOUT Bool)
Execute command

target (INOUT TypeTarget)
Target to operate on

potLifeTimeRem (OUTPUT UInt)
Remaining potlife time (min)

state (OUTPUT TypeExecuteCmdState)
Command state

4.1. GracoPd2kInt API 33

Graco PD2K Integrated Siemens SDK, Release 0.1.1

ReadUserID

Read the current User ID. See SendDCS for state codes.

execute (INOUT Bool)
Execute command

target (INOUT TypeTarget)
Target to operate on

userID (OUTPUT STRING[9])
User ID

state (OUTPUT TypeExecuteCmdState)
Command state

SendDCS

Send a dynamic command structure (DCS) to the PD2K. See the operation manual for more details regarding the DCS.

cmdID (INPUT USInt)
Command ID

arg1 (INPUT DWord)
Argument 1

arg2 (INPUT DWord)
Argument 2

arg3 (INPUT DWord)
Argument 3

arg4 (INPUT DWord)
Argument 4

arg5 (INPUT DWord)
Argument 5

arg6 (INPUT DWord)
Argument 6

arg7 (INPUT DWord)
Argument 7

execute (INOUT Bool)
Execute command

target (INOUT TypeTarget)
Target to operate on

ret1 (OUTPUT DWord)
Return 1

ret2 (OUTPUT DWord)
Return 2

ret3 (OUTPUT DWord)
Return 3

ret4 (OUTPUT DWord)
Return 4

34 Chapter 4. API Documentation

Graco PD2K Integrated Siemens SDK, Release 0.1.1

ret5 (OUTPUT DWord)
Return 5

ret6 (OUTPUT DWord)
Return 6

ret7 (OUTPUT DWord)
Return 7

ret8 (OUTPUT DWord)
Return 8

state (OUTPUT TypeExecuteCmdState)
Command state

State codes

• 16#2000 - Command completed

• 16#4000 - Command was aborted

• 16#8000 - Error, command ID must be non-zero

• 16#8001 - Error, device number is invalid

• 16#8002 - Internal error

• 16#8003 - Error, timed out waiting for DCS registers to be available

• 16#8004 - Error, DCS command failed

• 16#8005 - Error, timed out waiting for acknowledge signal

WriteFluidControlMode

Write a value for the fluid control mode. See SendDCS for state codes.

fluidControlMode (INPUT Bool)
Fluid control mode (False=flow, True=pressure)

execute (INOUT Bool)
Execute command

target (INOUT TypeTarget)
Target to operate on

state (OUTPUT TypeExecuteCmdState)
Command state

WriteFlushSeq

Write the parameters for a given flush sequence number. See SendDCS for state codes.

flushSeqNum (INPUT USInt)
Flush sequence number (1-5)

gunPurgeTime (INPUT UInt)
Gun purge time (0-999 s)

initFlushVol (INPUT UInt)
Initial flush volume (0-9999 cc)

4.1. GracoPd2kInt API 35

Graco PD2K Integrated Siemens SDK, Release 0.1.1

finalFlushVol (INPUT UInt)
Final flush volume (0-9999 cc)

numWashCycles (INPUT USInt)
Number of wash cycles (0-99)

strokesPerWashCycle (INPUT USInt)
Number of strokes per wash cycle (0-99)

execute (INOUT Bool)
Execute command

target (INOUT TypeTarget)
Target to operate on

state (OUTPUT TypeExecuteCmdState)
Command state

WriteMixFillSP

Write a value for the mix fill setpoint. See SendDCS for state codes.

mixFillSP (INPUT UInt)
Mix fill setpoint (1-1600 cc/min for flow mode, 1-1500 psi for pressure mode, 0 for disabled)

execute (INOUT Bool)
Execute command

target (INOUT TypeTarget)
Target to operate on

state (OUTPUT TypeExecuteCmdState)
Command state

WritePreset

Write the parameters for a given gun preset number. See SendDCS for state codes.

presetNum (INPUT USInt)
Preset number (0-98)

controlSP (INPUT UInt)
Fluid control setpoint (1-1600 cc/min for flow mode, 1-1500 psi for pressure mode)

innerAirSP (INPUT USInt)
Inner/atomizing air setpoint (7-99 psi)

outerAirSP (INPUT USInt)
Outer/fan air setpoint (7-99 psi)

turbineSpeedSP (INPUT USInt)
Turbine speed setpoint (10-60 kRPM)

elecVoltageSP (INPUT USInt)
Electrostatics voltage setpoint (0-100 kV)

elecCurrentSP (INPUT USInt)
Electrostatics current setpoint (0-150 uA)

execute (INOUT Bool)
Execute command

36 Chapter 4. API Documentation

Graco PD2K Integrated Siemens SDK, Release 0.1.1

target (INOUT TypeTarget)
Target to operate on

state (OUTPUT TypeExecuteCmdState)
Command state

WriteRecipe

Write the parameters for a given recipe number. See SendDCS for state codes.

recipeNum (INPUT USInt)
Recipe number (0-21)

matNumA (INPUT USInt)
Material number for component A (0-30)

matNumB (INPUT USInt)
Material number for component B (0, 31-34)

flushSeqNumA (INPUT USInt)
Flush sequence number for component A (1-5)

flushSeqNumB (INPUT USInt)
Flush sequence number for component B (1-5)

mixRatioSP (INPUT UInt)
Mix ratio setpoint (0-5000, A*100 : B)

potLifeTimeSP (INPUT UInt)
Potlife time setpoint (0-999 min)

execute (INOUT Bool)
Execute command

target (INOUT TypeTarget)
Target to operate on

state (OUTPUT TypeExecuteCmdState)
Command state

WriteUserID

Write a value for the user ID. See SendDCS for state codes.

userID (INPUT STRING[9])
User ID

execute (INOUT Bool)
Execute command

target (INOUT TypeTarget)
Target to operate on

state (OUTPUT TypeExecuteCmdState)
Command state

4.1. GracoPd2kInt API 37

Graco PD2K Integrated Siemens SDK, Release 0.1.1

4.1.3 UDTs

TypeDcsAckFlags

Acknowledge flags for DCS

nop (Bool)
No operation

busy (Bool)
Busy

ack (Bool)
Acknowledged successfully

nak (Bool)
Not acknowledged

err (Bool)
Error

TypeEnableCmdState

State for enable commands

aborted (Bool)
Command aborted

busy (Bool)
Command is busy

error (Bool)
Command error

valid (Bool)
Command is valid

code (Word)
state code

TypeExecuteCmdState

State for execute commands

aborted (Bool)
Command aborted

busy (Bool)
Command is busy

error (Bool)
Command error

done (Bool)
Command is done

code (Word)
State code

38 Chapter 4. API Documentation

Graco PD2K Integrated Siemens SDK, Release 0.1.1

TypeFunctionCmdState

State for function commands

error (Bool)
Command error

done (Bool)
Command completed

code (Word)
State code

TypeGunControls

Gun control inputs. See GunControl.

sprayCmd (Bool)
Spray mode command

powerOffCmd (Bool)
Power off command

powerOnCmd (Bool)
Power on command

quickStopCmd (Bool)
Quick stop command

purgeCmd (Bool)
Purge mode command

idleCmd (Bool)
Idle mode command

innerAirOffCmd (Bool)
Inner air off command

innerAirOnCmd (Bool)
Inner air on command

outerAirOffCmd (Bool)
Outer air off command

outerAirOnCmd (Bool)
Outer air on command

gun1OffCmd (Bool)
Gun 1 off command

gun1OnCmd (Bool)
Gun 1 on command

gun2OffCmd (Bool)
Gun 2 off command

gun2OnCmd (Bool)
Gun 2 on command

gun3OffCmd (Bool)
Gun 3 off command

4.1. GracoPd2kInt API 39

Graco PD2K Integrated Siemens SDK, Release 0.1.1

gun3OnCmd (Bool)
Gun 3 on command

openDumpValve (Bool)
Open dump valve command

closeDumpValve (Bool)
Close dump valve command

openCupWashValve (Bool)
Open cup wash valve command

closeCupWashValve (Bool)
Close cup wash valve command

aux3OffCmd (Bool)
Auxilliary solenoid 3 off command

aux3OnCmd (Bool)
Auxiliary solenoid 3 on command

electrostaticsOffCmd (Bool)
Electrostatics off command

electrostaticsOnCmd (Bool)
Electrostatics on command

gunPresetNum (USInt)
Gun preset number

dynInnerAirSP (USInt)
Dynamic preset inner air setpoint (psi)

dynOuterAirSP (USInt)
Dynamic preset outer air setpoint (psi)

dynTurbineSpeedSP (USInt)
Dynamic preset turbine speed setpoint (kRPM)

dynElecVoltageSP (USInt)
Dynamic preset electrostatics voltage setpoint (kV)

dynElecCurrentSP (USInt)
Dynamic preset electrostatics current setpoint (uA)

TypePd2kIntGunModeFlags

Gun mode flags

off (Bool)
Gun power off

offAlarm (Bool)
Gun power off, alarm is active

startup (Bool)
Gun startup

idle (Bool)
Gun in idle mode

spray (Bool)
Gun in spray mode

40 Chapter 4. API Documentation

Graco PD2K Integrated Siemens SDK, Release 0.1.1

purge (Bool)
Gun in purge mode

TypePd2kIntPumpStatusFlags

Pump status flags

off (Bool)
Pump is off

standby (Bool)
Pump is in standby

busy (Bool)
Pump is busy

flushing (Bool)
Pump is flushing

priming (Bool)
Pump is priming

TypePd2kIntStatus

PD2K Integrated status data. See StatusToUDT .

inStandby (Bool)
System is in standby

gun1Trigger (Bool)
Gun 1 trigger status

gun2Trigger (Bool)
Gun 2 trigger status

gun3Trigger (Bool)
Gun 3 trigger status

safetyInterlock (Bool)
Safety interlock status

elecOn (Bool)
Electrostatics on status

innerAirOn (Bool)
Inner air on status

outerAirOn (Bool)
Outer air on status

gun1Solenoid (Bool)
Gun 1 solenoid on status

gun2Solenoid (Bool)
Gun 2 solenoid on status

gun3Solenoid (Bool)
Gun 3 solenoid on status

dumpValve (Bool)
Dump valve on status

4.1. GracoPd2kInt API 41

Graco PD2K Integrated Siemens SDK, Release 0.1.1

cupWashValve (Bool)
Cup wash valve on status

aux3Solenoid (Bool)
Auxiliary solenoid 3 on status

systemMode (USInt)
System mode

systemModeFlags (TypePd2kIntSystemModeFlags)
System status flags

pump1Status (USInt)
Pump 1 status

pump1StatusFlags (TypePd2kIntPumpStatusFlags)
Pump 1 status flags

pump2Status (USInt)
Pump 2 status

pump2StatusFlags (TypePd2kIntPumpStatusFlags)
Pump 2 status flags

pump3Status (USInt)
Pump 3 status

pump3StatusFlags (TypePd2kIntPumpStatusFlags)
Pump 3 status flags

pump4Status (USInt)
Pump 4 status

pump4StatusFlags (TypePd2kIntPumpStatusFlags)
Pump 4 status flags

actualMixFlow (UInt)
Actual mix flow/pressure (cc/min in flow mode, psi in pressure mode)

actualMixRatio (UInt)
Actual mix ratio (A*100 : B)

actualPotLifeRemaining (UInt)
Actual pot life time remaining (sec)

activeRecipeNum (USInt)
Active recipe number

activeMatNumA (USInt)
Active material number for component A

activeMatNumB (USInt)
Active material number for component B

activeFlushSeqNumA (USInt)
Active flush sequence number for component A

activeFlushSeqNumB (USInt)
Active flush sequence number for component B

activeRatioSP (UInt)
Active mix ratio setpoint (A*100 : B)

42 Chapter 4. API Documentation

Graco PD2K Integrated Siemens SDK, Release 0.1.1

activePotLifeSP (UInt)
Active pot life setpoint (min)

gunMode (USInt)
Current gun mode

gunModeFlags (TypePd2kIntGunModeFlags)
Current gun mode flags

gunActivePresetNum (USInt)
Active gun preset number

targetShapingAir1 (USInt)
Target shaping air 1 (psi)

targetShapingAir2 (USInt)
Target shaping air 2 (psi)

targetTurbineSpeed (USInt)
Target turbine speed (kRPM)

targetElecVoltage (USInt)
Target electrostatics voltage (kV)

actualShapingAir1 (USInt)
Actual shaping air 1 (psi)

actualShapingAir2 (USInt)
Actual shaping air 2 (psi)

actualTurbineSpeed (USInt)
Actual turbine speed (kRPM)

actualElecVoltage (USInt)
Actual electrostatics voltage (kV)

actualElecCurrent (USInt)
Actual electrostatics current (uA)

dcsAck (USInt)
DCS acknowledge

dcsAckFlags (TypeDcsAckFlags)
DCS acknowledge flags

dcsRet1 (DWord)
DCS return 1

dcsRet2 (DWord)
DCS return 2

dcsRet3 (DWord)
DCS return 3

dcsRet4 (DWord)
DCS return 4

dcsRet5 (DWord)
DCS return 5

dcsRet6 (DWord)
DCS return 6

4.1. GracoPd2kInt API 43

Graco PD2K Integrated Siemens SDK, Release 0.1.1

dcsRet7 (DWord)
DCS return 7

dcsRet8 (DWord)
DCS return 8

TypePd2kIntSystemModeFlags

System mode flags

pumpOff (Bool)
System is off

colorChange (Bool)
Color change is active

colorChangePurgeA (Bool)
Color change is active, purging component A

colorChangePurgeB (Bool)
Color change is active, purging component B

colorChangeFilling (Bool)
Color change is active, filling

mixFill (Bool)
System in mix fill mode

mix (Bool)
System in mix mode

mixIdle (Bool)
System in mix idle mode

purgeA (Bool)
Purging component A

purgeB (Bool)
Purging component B

standbyMixReady (Bool)
Standby, mix ready

standbyFillReady (Bool)
Standby, ready for fill

standbyMixNotReady (Bool)
Standby, mix is not ready

standbyAlarm (Bool)
Standby, alarm is active

lineFillingFlushing (Bool)
Line is filling/flushing

44 Chapter 4. API Documentation

Graco PD2K Integrated Siemens SDK, Release 0.1.1

TypePumpControls

Pump control inputs. See PumpControl.

powerOnCmd (Bool)
Power on command

powerOffCmd (Bool)
Power off command

quickStopCmd (Bool)
Quick stop command

recipeChangeCmd (Bool)
Recipe change command

clearAlarm (Bool)
Clear alarm command

completeJob (Bool)
Complete job command

ctrlMode (Bool)
Control mode (0=flow, 1=pressure)

mixCmd (Bool)
Mix mode command

mixFillCmd (Bool)
Mix fill mode command

recipePurgeCmd (Bool)
Recipe purge command

standbyCmd (Bool)
Standby mode command

mixCtrlSP (UInt)
Mix control SP (cc/min for flow mode, psi for pressure mode)

nextRecipeNum (UInt)
Next recipe number

TypeTarget

Defines a target Profinet device. See Using TypeTarget.

simulate (Bool)
Simulation mode select (1=on)

pnDeviceNum (UInt)
Profinet device number

simData (Array[1..64] of DWord)
Simulation data

4.1. GracoPd2kInt API 45

Graco PD2K Integrated Siemens SDK, Release 0.1.1

46 Chapter 4. API Documentation

CHAPTER

FIVE

CHANGELOG

5.1 Release version 0.1.1

Release date: 2023-01-12

This is the initial release of the SDK.

47

	Overview
	About the PD Platform
	Related Manuals

	Compatibility

	Getting Started
	Getting the SDK
	Using the example project as a template
	Configure the PLC
	Configure the PD2K
	Project Structure
	Running the PD2K
	Where to go from here

	Adding the SDK to an existing project
	Using the global library

	Design
	Command model standard
	The state output parameter
	Function Model
	Execute model
	Enable model

	Sharing access to device registers
	Accessing Profinet device data
	Accessing a Profinet IO device by device number
	Using TypeTarget

	API Documentation
	GracoPd2kInt API
	Functions (FC)
	DecodeDateTime
	DecodeEventCode
	DecodeUserID
	EncodeUserID
	GetDataBySlotNum
	SetDataBySlotNum
	StatusToUDT

	Function Blocks (FB)
	GunControl
	State codes

	PumpControl
	State codes

	ReadAlarmInfo
	ReadEventInfo
	ReadFluidControlMode
	ReadFlushSeq
	ReadGunContents
	ReadJobInfo
	ReadMixFillSP
	ReadPreset
	ReadPumpMaterial
	ReadRecipe
	ReadRecipePotLifeTime
	ReadUserID
	SendDCS
	State codes

	WriteFluidControlMode
	WriteFlushSeq
	WriteMixFillSP
	WritePreset
	WriteRecipe
	WriteUserID

	UDTs
	TypeDcsAckFlags
	TypeEnableCmdState
	TypeExecuteCmdState
	TypeFunctionCmdState
	TypeGunControls
	TypePd2kIntGunModeFlags
	TypePd2kIntPumpStatusFlags
	TypePd2kIntStatus
	TypePd2kIntSystemModeFlags
	TypePumpControls
	TypeTarget

	Changelog
	Release version 0.1.1

